Standard Practice for
Xenon-Arc Exposure of Plastics Intended for Outdoor Applications

This standard is issued under the fixed designation D2565; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers specific procedures and test conditions that are applicable for xenon-arc exposure of plastics conducted in accordance with Practices G151 and G155. This practice also covers the preparation of test specimens, the test conditions best suited for plastics, and the evaluation of test results.

Note 1—Previous versions of this practice referenced xenon-arc devices described in Practice G26, which described very specific equipment designs. Practice G26 is being replaced by Practice G151, which describes performance criteria for all exposure devices that use laboratory light sources and by Practice G155, which gives requirements for exposing nonmetallic materials in xenon-arc devices. Practice G26 will be balloted for withdrawal before December 2000.

1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 2—This practice is technically equivalent to ISO 4892-2.

2. Referenced Documents

2.1 ASTM Standards:2

D1293 Test Methods for pH of Water
D3980 Practice for Interlaboratory Testing of Paint and Related Materials (Withdrawn 1998)3
D5870 Practice for Calculating Property Retention Index of Plastics
E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
G26 Practice for Operating Light-Exposure Apparatus (Xenon-Arc Type) With and Without Water for Exposure of Nonmetallic Materials (Discontinued 2001) (Withdrawn 2000)4

ISO Standards:

ISO 4892-2 Plastics—Methods of Exposure to Laboratory Light Sources — Part 2, Xenon Arc Lamp

3. Terminology

3.1 The definitions in Terminology G113 are applicable to this practice.

4. Significance and Use

4.1 The ability of a plastic material to resist deterioration of its electrical, mechanical, and optical properties caused by exposure to light, heat, and water can be very significant for many applications. This practice is intended to induce property changes associated with end-use conditions, including the effects of daylight, moisture, and heat. The exposure used in this practice is not intended to simulate the deterioration caused by localized weather phenomena, such as, atmospheric pollution, biological attack, and saltwater exposure.

4.2 Caution—Variations in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore, all references to the use of this practice must be accompanied by a report prepared in accordance with Section 9 that describes the specific operating conditions used. Refer to Practice G151 for detailed information on the caveats applicable to use of results obtained in accordance with this practice.

2 The last approved version of this historical standard is referenced on www.astm.org.

3 The original adoption or, in the case of revision, the year of last reapproval. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

NOTE 3—Additional information on sources of variability and on strategies for addressing variability in the design, execution, and data analysis of laboratory-accelerated exposure tests is found in Guide G141.

4.3 Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control.\(^5\) Therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended. It is recommended that at least three replicates of each material be exposed to allow for statistical evaluation of results.

4.4 Test results will depend upon the care that is taken to operate the equipment in accordance with Practice G155. Significant factors include regulation of line voltage, freedom from salts or other deposits from water, temperature and humidity control, and condition and age of the burner and filters.

5. Apparatus

5.1 Use xenon-arc apparatus that conform to the requirements defined in Practices G151 and G155.

5.2 Unless otherwise specified, the spectral power distribution (SPD) of the xenon lamp shall conform to the requirements of Table 1 in Practice G155 for a xenon lamp with daylight filters.

6. Test Specimen

6.1 The size and shape of specimens to be exposed will be determined by the specifications of the particular test method used to evaluate the effects of the exposure on the specimens; the test method shall be determined by the parties concerned. Where practical, it is recommended that specimens be sized to fit specimen holders and racks supplied with the exposure apparatus. Unless supplied with a specific backing as an integral part of the test, specimens shall be mounted so that only the minimum specimen area required for support by the holder shall be covered. This unexposed surface must not be used as part of the test area.

6.2 Unless otherwise specified, expose at least three replicate specimens of each test material and of the control material, if used.

6.3 Follow the procedures described in Practice G147 for identification and conditioning and handling of test specimens, control, and reference materials prior to, during, and after exposure.

6.4 Do not mask the face of a specimen for the purpose of showing on one panel the effects of various exposure times. Misleading results may be obtained by this method, since the masked portion of the specimen is still exposed to temperature and humidity cycles that in many cases will affect results.

6.5 Since the thickness of a specimen may markedly affect the results, thickness of test and control specimens shall be within \(\pm 10\%\) of the nominal dimensions.

NOTE 4—This is especially important when mechanical properties are being investigated.

6.6 Incident energy at the extremes of the specimen exposure area in older equipment may be only 70 % of that at the center. If the irradiance at any position within the exposure area is less than 90 % of the peak irradiance, follow one of the procedures outlined in Practice G155 to ensure either equal radiant exposure or compensation for differences in irradiant exposure.

6.7 Retain a supply of unexposed file specimens of all materials evaluated.

6.7.1 When destructive tests are run, ensure that sufficient file specimens are retained so that the property of interest can be determined on unexposed file specimens each time exposed materials are evaluated.

6.8 Specimens should not be removed from the exposure apparatus for more than 24 h and then returned for additional tests, since this does not produce the same results on all materials as tests run without this type of interruption. When specimens are removed from the exposure apparatus for 24 h or more and then returned for additional exposure, report the elapsed time in accordance with Section 9.

NOTE 5—Since the stability of the file specimen may also be time-dependent, users are cautioned that over prolonged exposure periods, or where small differences in the order of acceptable limits are anticipated, comparison of exposed specimens with the file specimen may not be valid. Instrumental measurements are recommended whenever possible.

7. Procedure

7.1 Practice G155 lists several exposure cycles that are used for xenon-arc exposures of nonmetallic materials. Table 1 lists several of these cycles. Obtain mutual agreement between all concerned parties for the specific exposure cycle used.

7.2 If no other cycle is specified, use Cycle No. 1.

7.2.1 Unless otherwise specified, control the irradiance to produce \(0.35 \pm 0.02\) W/m\(^2\) at 340 nm or \(41.5 \pm 2.5\) W/m\(^2\) between 300 and 400 nm. If the exposure device is not equipped with irradiance control, follow the device manufacturer’s recommendations to produce this irradiance, or other specified irradiance level.

7.2.2 Unless otherwise specified, in devices which allow for control of relative humidity, maintain relative humidity at 50 \(\pm 5\%\) equilibrium during the light-only interval.

7.2.3 Unless otherwise specified, the equilibrium temperature of an uninsulated black panel thermometer shall be 63 \(\pm 2\)\(^\circ\)C.

7.3 It is recommended that all unused spaces in the specimen exposure area be filled with blank metal panels.

7.4 Water Purity:

7.4.1 The purity of water used for specimen spray is very important. Without proper treatment to remove cations, anions, organics, and particularly silica, exposed panels will develop spots or stains that may not occur in exterior exposures.

7.4.2 Follow the requirements for water purity described in Practice G151.

7.4.3 If specimens are found to have deposits or stains after exposure in the apparatus, the water purity must be checked to determine if it meets the requirements of 7.4.2. On some occasions, exposed specimens can be contaminated by deposits from bacteria that can grow in the purified water used for specimen spray. If bacterial contamination is detected, the entire system used for specimen water spray must be flushed with chlorine and thoroughly rinsed prior to resuming exposures.

7.4.4 The temperature of water used for specimen spray should be 16 ± 5°C (60.8 ± 9°F).

7.4.5 When the preceding water purity requirements are met and there is disagreement between parties on the extent of problems caused by stain or deposit, run referee tests in at least one other laboratory that can meet the water quality requirements described in 7.4.

7.5 Some tests for lightfastness are run without any specimen wetting. When this type of test is required, omit the period where water is sprayed on specimens.

7.6 It is recommended that a control material be exposed at the same time as the test specimens for comparison purposes, if performance comparisons are not being made between the test materials themselves. All concerned parties must agree on the control material used.

7.6.1 Identification of any control specimen used shall accompany the report.

8. Periods of Exposure and Evaluation of Test Results

8.1 In most cases, periodic evaluation of test and control materials is necessary to determine the variation in magnitude and direction of property change as a function of exposure time or radiant exposure.

8.2 The time or radiant exposure necessary to produce a defined change in a material property can be used to evaluate or rank the stability of materials. This method is preferred over evaluating materials after an arbitrary exposure time or radiant exposure.

8.2.1 Exposure to an arbitrary time or radiant exposure may be used for the purpose of a specific test if agreed upon between the parties concerned or if required for conformance to a particular specification. When a single exposure period is used, select a time or radiant exposure that will produce the largest performance differences between the test materials or between the test material and the control material.

8.2.2 The minimum exposure time used shall be that necessary to produce a defined change in a material property that can be used to evaluate or rank the stability of materials. This method is preferred over evaluating materials after an arbitrary exposure time or radiant exposure.

8.2.3 The relation between time to failure in an exposure and the time or radiant exposure necessary to produce a defined change in a material property can be used to evaluate or rank the stability of materials. This method is preferred over evaluating materials after an arbitrary exposure time or radiant exposure.

8.2.4 The minimum exposure time used shall be that necessary to produce a significant change in one type of material cannot be assumed to be applicable to other types of materials.

8.2.5 The relation between time to failure in an exposure conducted in accordance with this practice and service life in an outdoor environment requires determination of a valid acceleration factor. Do not use arbitrary acceleration factors relating time in an exposure conducted in accordance with this practice and time in an outdoor environment because they can give erroneous information. The acceleration factor is material-dependent and is only valid if it is based on data from a sufficient number of separate exterior and laboratory-accelerated exposures so that results used to relate times to failure in each exposure can be analyzed using statistical methods.
8.3 After each exposure increment, evaluate or rate changes in exposed test specimens in accordance with applicable ASTM test methods.

8.4 Use of results from exposures conducted in accordance with this practice in specifications:

8.4.1 If a standard or specification for general use requires a definite property level after a specific time or radiant exposure in an exposure test conducted in accordance with this practice, base the specified property level on results from round-robin experiments run to determine the test reproducibility from the exposure and property measurement procedures. Conduct these round robins in accordance with Practice E691 or Practice D3980 and include a statistically representative sample of all laboratories or organizations who would normally conduct the exposure and property measurement.

8.4.2 If a standard or specification for use between two or three parties requires a definite property level after a specific time or radiant exposure in an exposure test conducted in accordance with this practice, base the specified property level on two independent experiments run in each laboratory to determine the reproducibility for the exposure and property measurement process. The reproducibility of the exposure/property measurement process is then used to determine the minimum level of property after the exposure that is mutually agreeable to all parties.

8.4.3 When reproducibility in results from an exposure test conducted in accordance with this practice has not been established through round-robin testing, specify performance requirements for materials in terms of comparison (ranked) to a control material. All specimens shall be exposed simultaneously in the same device. All concerned parties must agree on the specific control material used.

8.4.3.1 Conduct analysis of variance to determine whether any differences between test materials and control materials is statistically significant. Expose replicates of the test specimen and the control specimen so that statistically significant performance differences can be determined.

NOTE 6—An example of a statistical analysis using multiple-laboratory and exterior exposures to calculate an acceleration factor is described by Simms. See Practice G151 for more information and additional cautions about the use of acceleration factors.

NOTE 7—For some materials, changes may continue after the specimen has been removed from the exposure apparatus. Measurements (visual or instrumental) should be made within a standardized time period or as agreed upon between the interested parties. The standardized time period needs to consider conditioning prior to testing.

9. Report

9.1 Report the following information:

9.1.1 Type and model of exposure device.
9.1.2 Type of light source.
9.1.3 Type and age of filters at the beginning of the exposure, and whether there were any filter changes during the period of exposure.
9.1.4 If required, irradiance in Wm^-2 nm^-1, or radiant exposure in Jm^-2 at the sample plane, and the wavelength region in which the measurements were made.
9.1.4.1 Do not report irradiance or radiant exposure unless direct measurement of irradiance was made during the exposure.
9.1.5 Elapsed exposure time.
9.1.6 Light- and dark-water humidity cycle employed.
9.1.7 Type of black panel used and operating black panel temperature.
9.1.8 Operating relative humidity.
9.1.9 Type of spray water.
9.1.9.1 Total solids and silica level of water used for specimen spray (if above limits specified in 7.4).
9.1.10 Type of spray nozzle.
9.1.11 Specimen repositioning procedure.
9.1.12 Results of property tests.
9.1.12.1 Calculate retention of characteristic property in accordance with Practice D5870 when it is reported.

10. Precision and Bias

10.1 Precision—The repeatability and reproducibility of results obtained in exposures conducted in accordance with this practice will vary with the materials being tested, the material property being measured, and the specific test conditions and cycles that are used. It is essential to determine reproducibility of the exposure/property measurement process when using the results from exposures conducted in accordance with this practice in product specifications.

10.2 Bias—Bias cannot be determined because no acceptable standard weathering reference materials are available.

11. Keywords

11.1 degradation; exposure; light exposure; ultraviolet; xenon-arc
