Standard Test Method for
Aging Effects of Artificial Weathering on Latex Sealants

This standard is issued under the fixed designation C732; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

1.1 This test method covers a laboratory procedure for the determination of aging effects of artificial weathering on latex sealants.

1.2 The values stated in metric (SI) units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 1—Currently there is no ISO standard similar to this test method.

2. Referenced Documents

2.1 ASTM Standards:

C717 Terminology of Building Seals and Sealants
C1442 Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus

3. Terminology

3.1 Definitions:

3.1.1 Definitions of the following terms are found in Terminology C717: adhesive failure (loss of adhesion); latex sealant; sealant.

4. Summary of Test Method

4.1 The sealant is placed in a specially constructed wood- and-aluminum fixture (referred to as a “channel panel”) and exposed for intervals of 500 h to specified alternate wet and dry cycles in an accelerated weathering unit, then periodically examined for evidences of deterioration.

5. Significance and Use

5.1 Accelerated weathering exposure serves to indicate long-term exterior durability of the sealant. In this test method, durability is tested when the sealant is used with wood or aluminum.

6. Apparatus

6.1 Accelerated Weathering Device—One of the units as described in Practice C1442. Because of differences in spectral power distributions of the exposure sources and exposure parameters used in the different types of devices described in Practice C1442, test results may differ with the type of accelerated weathering device. Choice of type of device shall be by mutual agreement among the interested parties.

6.2 Channel Panel attached to a Sample Holder as shown in Fig. 1.

6.3 Knife, for tooling.

7. Sampling

7.1 Use the sealant to be tested directly from the container as commercially supplied by the manufacturer.

8. Test Specimens

8.1 Prepare two 25 by 70 by 175-mm (1 by 23/4 by 7-in.) wood-and-aluminum channel panels as shown in Fig. 1, using the following materials:

8.1.1 Exterior Fir Plywood, with a water-resistant thermostet glue such as urea or melamine-formaldehyde type.

8.1.2 Ponderosa Pine Sapwood, white kiln dried and free of knots or imperfections.

8.1.3 Aluminum Alloy 6063-T5 or 6061-T6, clear, anodized a minimum of 30 min over a scale-free finish.

8.1.4 Polyethylene Spacer of low-density film approximately 5 mils (0.13 mm) thick.

8.1.5 Screws and Nails, zinc-coated or nonrusting type.

8.2 Using a gun or knife, completely fill the two 7 by 13-mm (¼ by ½-in.) channels in both panels with sealant, striking off the excess from the top and ends so that it is flush with the panel surfaces.

Note 2—The length dimension of the channel may be reduced as needed to accommodate the specimen holder requirements of the artificial
weathering device available for use.

9. Conditioning
9.1 Condition both specimens for 7 days at 23 ± 1°C (73.4 ± 2°F) and 50 ± 5 % relative humidity.

10. Procedure
10.1 Secure one or more test specimen(s) in the artificial weathering unit and cycle for intervals of 500 h, beginning with the start of the light cycle. Refer to Practice C1442 for the artificial weathering unit operating conditions. Expose specimens in the xenon arc device for a minimum of 500 h at an irradiance level of 0.51 W/(m² · nm) at 340 nm. The radiant exposure for this is 918 kJ/(m² · nm) at 340 nm. To determine the exposure time required to obtain the same radiant exposure at other irradiance levels specified in Practice C1442, see Annex A1 in C1442.

10.2 Maintain an unexposed file specimen at standard conditions until the accelerated weathering exposure is complete.

10.3 After the test specimen has been exposed as specified in 10.1, remove it, allow it to cool to 23 ± 1°C (73.4 ± 2°F). Examine it visually for wash-out, slump, cracking, loss of adhesion to the wood or aluminum, and discoloration.

11. Report
11.1 Report the type and description of the laboratory accelerated weathering device and the length of time the test

![Diagram of Channel Panel attached to a Sample Holder]

<table>
<thead>
<tr>
<th>Metric Equivalents</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>mm</td>
<td>in.</td>
</tr>
<tr>
<td>¼</td>
<td>6.4</td>
<td>¼</td>
</tr>
<tr>
<td>⅛</td>
<td>9.5</td>
<td>⅛</td>
</tr>
<tr>
<td>½</td>
<td>12.7</td>
<td>7</td>
</tr>
</tbody>
</table>

Materials:
1—¾ by 2¼ by 7-in. plywood
1—1¼ by ¾ by 7-in. aluminum
2—⅛ by ½ by 7-in. ponderosa white pine
1—2½ by 7-in. sheet untreated polyethylene
3 Screws
6 Nails
1 Aluminum Panel
specimen(s) was/were exposed in the artificial weathering device. Compare the exposed specimen with the unexposed file specimen, and report any changes in wash-out, slump, cracking, or loss of adhesion, or discoloration.

12. Precision and Bias

12.1 No statement is made about either the precision or the bias of this test method for measuring wash-out, slump, cracking, or loss of adhesion since the result merely states whether there is conformance to the criteria for success specified in the procedure.

13. Keywords

13.1 artificial weathering; latex sealant

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9555 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2660; http://www.copyright.com/